jeton-nano opencv基础使用

Xsens动作捕捉 2023-04-14 4639

前言:

jetson nano前一篇给大家介绍了学习的一些思路和资料,今天继续给大家分享一篇在jetson nano使用opencv的文章。

OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。

在视觉处理中,opencv使用是基础的部分,所以在板卡使用过程中,opecv使用是第一道关。接下来我给大家介绍一下,在jetson nano里面使用opencv的python版本和c++版本的过程,其中c++使用部分会分别给大家介绍cmake和makefile编译两种方法。

作者:良知犹存

转载授权以及围观:欢迎关注微信公众号:羽林君

或者添加作者个人微信:become_me


oepcv介绍:

OpenCV 的目标是为计算机视觉需要解决的问题提供工具。在某些情况下,函数库中的高级功能可以有效解决计算机视觉中的问题。即使遇到不能够一次性解决的问题,函数库中的基础组件也具有足够的完备性来增强解决方案的性能,以应对任意的计算机视觉难题。

基本功能:

opencv的应用领域非常广泛,包括图像拼接、图像降噪、产品质检、人机交互、人脸识别、动作识别、动作跟踪、无人驾驶,此外,它还提供了机器学习模块,你可以使用正态贝叶斯、K最近邻、支持向量机、决策树、随机森林、人工神经网络等机器学习算法。

注:示例代码参考了其他博主文章。

opencv-python使用:

opencv-python使用比较简单,import导入cv2,这样我们就可以使用opencv-python模块的函数执行我们需要的动作了,下面介绍了一个比较简单的图像转换的demo。 opencv-python安装

pip3 install opencv-python

jeton-nano opencv基础使用  第1张

示例代码

"""

彩图转灰度图

"""

#import 导入模块,每次使用模块中的函数都要是定是哪个模块。

#from…import * 导入模块,每次使用模块中的函数,直接使用函数就可以了;注因为已经知道该函数是那个模块中的了

from skimage.color import rgb2gray #skimage图形处理库 color是颜色空间转换子模块 pip install scikit-image

import numpy as np

import matplotlib.pyplot as plt #matlab的python库 pip install matplotlib

from PIL import Image # Python Imaging Library 图像处理库 pip install pillow

import cv2

#图像灰度化

#cv2的方式

img = cv2.imread("/home/lyn/Pictures/318c944a7daa47eaa37eaaf8354fe52f.jpeg")

h,w = img.shape[:2] #获取图片的high和wide

img_gray=np.zeros([h,w],img.dtype) #创建一张和当前图片大小一样的单通道图片

for i in range(h):

for j in range(w):

m = img[i,j]

img_gray[i,j] =int(m[0]*0.11+m[1]*0.59+m[2]*0.3) #将BGR坐标转换为gray坐标

print(img_gray)

print("image show grap:%s"%img_gray)

cv2.imshow("imageshow gray", img_gray)

#plt方式

plt.subplot(221) #表示将整个图像窗口分为2行2列, 当前位置为1.

img = plt.imread("/home/lyn/Pictures/318c944a7daa47eaa37eaaf8354fe52f.jpeg")

plt.imshow(img)

print("----image lenna -----")

print(img)

#灰度化

img_gray = rgb2gray(img)

plt.subplot(222)

plt.imshow(img_gray,cmap="gray")

print("-----image gray-------")

print(img_gray)

#二值化

img_binary = np.where(img_gray >= 0.5, 1, 0)

print("-----imge_binary------")

print(img_binary)

print(img_binary.shape)

#plt方式

plt.subplot(223)

plt.imshow(img_binary, cmap=gray)

plt.show()

jeton-nano opencv基础使用  第2张

opencv c++使用:

opencv-c++安装 一般系统使用opencv 需要我们自己去官网:https://opencv.org,下载自己对应的包,然后camke->make->make install ,直至把编译好的opencv的文件安装到指定目录。

但是在Jetson Nano的镜像包中,预装了opencv4,版本的话是从4.1版本以后的。 我使用命令查询之后,我安装的镜像opencv版本是4.1.1

jetson@jetson-desktop:/usr/include/opencv4/opencv2$ opencv_version 

4.1.1

C++下开发Opencv需要进行一些额外的配置,先看一下opencv的头文件位置。

jetson中,opencv的头文件在这个目录 /usr/include/opencv4/,待会要把该目录写如编译链接文件中去。

jeton-nano opencv基础使用  第3张


链接文件位置: ls libopencv*

jeton-nano opencv基础使用  第4张


具体路径为 /usr/lib/aarch64-linux-gnu,待会也要把该目录写如编译链接文件中去。

在c++开发中,我们一般会使用make工具或者cmake工具,帮助我们进行打包编译,这里我也给大家分享makefle和cmake两种c++调用opencv的库。

makefile

Makefile文件分享,注意这里 LIBS 链接的opencv链接的具体文件,需要一个一个写进去。这里我随便写了几个常用的包,大家可以按照需求自行添加。

OBJS = *.o 

CFLAGS = -Wall -g -std=c++11

CC = gcc

CPP = g++

INCLUDES +=-I /usr/include/opencv4/ -I /usr/local/include #编译头文件目录

LIBS += -L/usr/lib/aarch64-linux-gnu -lopencv_core -lopencv_imgcodecs -lopencv_imgproc -lopencv_highgui -lopencv_objdetect #链接具体使用的库

target:${OBJS}

# g++ -o target boost_thread.o -llua -ldl

@echo "-- start " ${CC} ${CFLAGS} ${OBJS} -o $@ ${INCLUDES} ${LIBS}

$(CPP) ${CFLAGS} ${OBJS} -o $@ ${INCLUDES} ${LIBS}

clean:

-rm -f *.o core *.core target

%.o:%.cpp #将src目录下所有的.cpp文件编译成.o文件

${CPP} ${CFLAGS} ${INCLUDES} -c $<

代码show_img.cpp:

#include <opencv2/opencv.hpp>

#include <iostream>

using namespace std;

using namespace cv;

int main(int argc,char** argv)

{

std::cout<<"hello opencv"<<std::endl;

//灰度图显示

Mat src = imread("/home/jetson/lyn_work/c++/sp_noise.png",IMREAD_GRAYSCALE);//读取进来的数据以矩阵的形势,第二个参数代表显示一张灰度图像。

if (src.empty())

{

std::cout<<"could not load image"<<endl;//如果图片不存在 将无法读取,打印到终端。

}

//超过屏幕的图像无法显示时候调用此函数。

namedWindow("输入窗口", WINDOW_GUI_EXPANDED);//创建了一个新窗口,参数1表示名称,第二个参数代表一个自由的比例

imshow("输入窗口", src);//表示显示在新创建的输入窗口上,第一个参数表示窗口名称,src表示数据对象Mat

waitKey(0);//执行到这句,程序阻塞。参数表示延时时间。单位ms

destroyAllWindows();//销毁前面创建的显示窗口

return 0;

}

编译并执行:

make 

jeton-nano opencv基础使用  第5张
./target

jeton-nano opencv基础使用  第6张

cmake

对应CMakeLists.txt文件内容: cmake编译中,我们使用的链接对应OpenCV动态库文件就不用像Makefile文件那样要一个个添加了,cmake相当与添加了所有的opencv链接文件,这个是很方便的。所以后面cmake的类子里面,我多写了一个范例。

cmake_minimum_required( VERSION 2.8 )

# 声明一个 cmake 工程

project(opencv_learn)

# 设置编译模式

#set( CMAKE_BUILD_TYPE "Debug" )

#添加OPENCV库

#指定OpenCV版本,代码如下

#find_package(OpenCV 4.2 REQUIRED)

#如果不需要指定OpenCV版本,代码如下

find_package(OpenCV REQUIRED)

include_directories(

./src/)

#添加OpenCV头文件

include_directories(${OpenCV_INCLUDE_DIRS})

#显示OpenCV_INCLUDE_DIRS的值

message(${OpenCV_INCLUDE_DIRS})

FILE(GLOB_RECURSE TEST_SRC

#src/*.cpp

#src/*.c

${CMAKE_SOURCE_DIR}/*.cpp

${CMAKE_SOURCE_DIR}/*.cp

)

# 添加一个可执行程序

# 语法:add_executable( 程序名 源代码文件 )

add_executable(target show_img.cpp ${TEST_SRC})

# 将库文件链接到可执行程序上

target_link_libraries(target ${OpenCV_LIBS})

执行cmake编译:

mkdir build

cmake ..

make


jeton-nano opencv基础使用  第7张

demo1 :使用了和make示例同样的show_img.cpp代码文件,内容参考上面:

./target

jeton-nano opencv基础使用  第8张

demo2 :使用C++编程读取CSI摄像头,可以看到已经可以正常的显示视频流图像了,但是由于vnc连接的原因,颜色也有些失真. CMakeLists.txt增加两行:

add_executable(open_csi open_csi.cpp ${TEST_SRC})

target_link_libraries(open_csi ${OpenCV_LIBS})

open_csi.cpp代码文件如下:

#include <iostream>

#include <string>

#include <opencv4/opencv2/opencv.hpp>

#include <opencv4/opencv2/core.hpp>

#include <opencv4/opencv2/highgui.hpp>

#include <opencv4/opencv2/imgproc.hpp>

#include <opencv4/opencv2/objdetect.hpp>

#include <opencv4/opencv2/imgproc/types_c.h>

#include <opencv4/opencv2/videoio.hpp>

using namespace std;

using namespace cv;

string gstreamer_pipeline (int capture_width, int capture_height, int display_width, int display_height, int framerate, int flip_method)

{

return "nvarguscamerasrc ! video/x-raw(memory:NVMM), width=(int)" + to_string(capture_width) + ", height=(int)" +

to_string(capture_height) + ", format=(string)NV12, framerate=(fraction)" + to_string(framerate) +

"/1 ! nvvidconv flip-method=" + to_string(flip_method) + " ! video/x-raw, width=(int)" + to_string(display_width) + ", height=(int)" +

to_string(display_height) + ", format=(string)BGRx ! videoconvert ! video/x-raw, format=(string)BGR ! appsink";

}

int main( int argc, char** argv )

{

int capture_width = 1280 ;

int capture_height = 720 ;

int display_width = 1280 ;

int display_height = 720 ;

int framerate = 60 ;

int flip_method = 0 ;

//创建管道

string pipeline = gstreamer_pipeline(capture_width,

capture_height,

display_width,

display_height,

framerate,

flip_method);

std::cout << "使用gstreamer管道: \n\t" << pipeline << "\n";

//管道与视频流绑定

VideoCapture cap(pipeline, CAP_GSTREAMER);

if(!cap.isOpened())

{

std::cout<<"打开摄像头失败."<<std::endl;

return (-1);

}

//创建显示窗口

namedWindow("CSI Camera", WINDOW_AUTOSIZE);

Mat img;

//逐帧显示

while(true)

{

if (!cap.read(img))

{

std::cout<<"捕获失败"<<std::endl;

break;

}

int new_width,new_height,width,height,channel;

width=img.cols;

height=img.rows;

channel=img.channels();

//调整图像大小

new_width=640;

if(width>800)

{

new_height=int(new_width*1.0/width*height);

}

resize(img, img, cv::Size(new_width, new_height));

imshow("CSI Camera",img);

int keycode = cv::waitKey(30) & 0xff ; //ESC键退出

if (keycode == 27) break ;

}

cap.release();

destroyAllWindows() ;

}

显示效果如截图所示:

jeton-nano opencv基础使用  第9张

结语

这就是我对jetson nano使用opencv的基础分享,后面我们就可以基于opencv做一些更有意思的项目了,比如人脸识别,物体识别,姿态识别等等。如果大家有更好的想法和需求,也欢迎大家加我好友交流分享哈。


作者:良知犹存,白天努力工作,晚上原创公号号主。公众号内容除了技术还有些人生感悟,一个认真输出内容的职场老司机,也是一个技术之外丰富生活的人,摄影、音乐 and 篮球。关注我,与我一起同行。

????????????????  END  ????????????????

The End